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Chapter 1 

Introduction 

Noticing that the Newton's law of gravitation is irreconcilable with the 

special theory of relativity, Einstein postulated a new theory of space, time, 

and gravitation which is known as the general theory of relativity (GTR). 

Unlike the case of the special theory of relativity, there have been some 

objections by few physicists as well as Einstein himself against the new 

theory of gravitation. Nontheless, it has witnessed better experimental 

evidences as compared to the Newtonian gravity. Therefore, one has a 

predilection for the Einstein's theory of gravitation over the Newtonian 

theory. However, it remained almost in quiesecent stage for a long time, 

partly due to the reason that it presents an entirely new standpoint which 

was difficult to understand, and partly because the high energy compact 

objects were not discovered and the Newtonian theory was sufficient to 

deal with the the physical systems in hand. However, the discovery of the 

quassars and compact X-ray sources encouraged many researchers to study 
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general relativity to investigate about various esoteric compact objects. 

Another striking reason for growing interest in this subject is that a deeper 

understanding of the classical theory of gravitation could be helpful in the 

way of achieving a viable theory of quantum gravity. Many researchers 

have put painstaking efforts for investigating into the various aspects of 

this subject. 

The dynamical features of any field is best understood through the tra­

jectories of the test particles in the representative spacetime. In general 

theory of relativity, as the gravitational field is represented by the space­

time curvature, the spacetime structure itself dictates the orbit of the test 

particles which when not subjected to any other interaction, move along 

geodesics. The trajectories of the test particles in various spacetimes have 

been studied by many authors which are cited in a paper by Sharp (1979). 

However, in many of the physical situations there are other fields and inter­

actions, amongst which the electromagnetic field is prevalent one. Charged 

particles in curved spacetime in the presence of the electromagnetic fields 

do not follow geodesics and similarly the test particles with spin also de­

viate from geodesics as shown by Papapetrou (1951). Further Corinaldesi 

and Papapetrou (1951) discussed the equations of motion for spinning test 

particles satisfying the condition Si0 = 0 (where Sik is the spin tensor). 

One of the important features related to the dynamics of the spin is its 

precession induced by the interaction with the field. Schiff ( 1960) studied 

the geodetic spin precession of a test particle in a free fall about a mas-
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sive sphere and proposed the result for a plausible test of general relativity. 

Unfortunately, due to some technical problems, the gyroscope experiment 

could not be accomplished as yet. However, the study of the spin precession 

of charged particles in curved spacetime background endowed with electro­

magnetic fields has not been paid proper attention. A charged spinning 

particle has its magnetic dipole moment 8, proportional to its spin angular 

momentum S, through the relation 8 = g e Sj 2 m 0 , where g the Lande 

factor has values for example, for electron and proton, 9e = 2.0023 and gp 

= 5.59, respectively. In the presence of a magnetic field, the spin angular 

momentum vector suffers a precession due to the torque 8 X B acting on 

it. Anderson (1967) gave a relativistic generalization for a torque acting 

on a spinning charged particle due to the electromagnetic field. Prasanna 

and Kumar (1973), using the Anderson's generalization of the torque and 

Papapetrou's equations of spin and orbit with a Lorentz force term, studied 

the spin precession of charged particles in Melvin's magnetic universe. 

We ( Prasanna and Virbhadra 1989; Virbhadra and Prasanna 1989, 

1990, 1991) expressed these generalized equations in a rather convenient 

form and have investigated the same in the following physical situations 

: (a) a magnetic field dipolar at infinity superposed on Schwarzschild 

background (Ginzburg- Ozernoi solution ), (b) a uniform magnetic field 

superposed on Schwarzschild background (Wald solution), (c) a Reissner­

Nordstrom source, and (d) a Schwarzschild object embeded in a uniform 

magnetic field (Ernst solution). Unlike thecae of the Wald solution which 
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is the solution of the Maxwell equations on Schwarzschild background, the 

Ernst solution being the solution of the Einstein-Maxwell equations incor­

porates the effects of curvature due to the magnetic field. We confined our 

attention to the particles in circular motion on the equatorial plane and 

found the spin precession frequencies for the aforesaid cases. The flat space 

limit to the expressions obtained for the spin precession frequency yields 

interesting results. We have found that cases (a) and (b) yield special rela­

tivistic contribution to the well known Larmor frequency, whereas case (c) 

puts a bound ( 0 > g, g > 2) on the Lande g-factor. Apart from the above 

there are other interesting outcomes of these investigations. Though the 

calculations have been accomplished in a fully covariant prescription, the 

purely geodetic terms have not appeared in the result. However, when we 

(Virbhadra and Prasanna 1991) have introduced local Lorentz frames the 

purely geodetic terms have appeared explicitly along with the other terms. 

Another subject which drew our attention is the energy and angular 

momentum in curved spacetimes. The energy- momentum localization in 

general relativity is a problematic issue and it has been a subject of exten­

sive research since the outset of the general relativity. While an adequate 

localization of energy and momentum would have immense benifits, the 

status is that one does not have that so far. Since Einstein's original pseu­

dotensor (M0ller 1958), a fairly large number of expressions for energy and 

momentum in general relativistic systems have been suggested by many au­

thors, e.g., Tolman (1930), Landau and Lifshitz (1985), Papapetrou (1948), 
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Gupta (1954), M0ller (1958), Goldberg (1958), Bergmann (1958), Dirac 

(1959), Komar (1959, 1962, 1963), Arnowitt et al.(1961), Bondi et al (1962), 

Hawking (1968), Weinberg (1972), Witten (1981), Penrose (1982), Lynden­

Bell and Katz (1985), Nahmad-Achar and Schutz (1987a, 1987b), Kulkarni 

et al (1988), Bartnik (1989) 1 Katz and Ori (1990) etc. There are mutually 

opposing viewpoints that authors share regarding the physical importance 

of the energy-momenum pseudotensors as well as a possibility of success­

ful localization of energy and momentum in curved spacetime. However, 

the total energy and momentum in asymptotically flat spacetimes have an 

unambiguous importance. Weinberg (1972), using his own prescr1ption for 

energy and angular momentum in asymptotically flat spacetimes, found the 

total energy and angular momentum associated with the Kerr spacetime to 

be M and M a respectively ( M stands for the mass parameter whereas a 

stands for the rotation parameter in Kerr metric). Palmer (1980) discussed 

the significance of Einstein's energy-momentum pseudotensor in detail. It 

is well known that the pseudotensors of Einstein, Tolman, and Landau 

and Lifshitz (LL) can yield sensible result only if the calculations are car­

ried out in quasi-Cartesian coordinates (that in which increase in spatial 

distance converges the components of the metric tensor to their values of 

special relativity) which are usually very lengthy to accomplish. Rosen 

(1956) evaluated energy and momentum of cylindrical gravitational waves 

in Cylindrical polar coordinats in LL prescription and found that the waves 

in empty space did not carry energy and momentum. Later he (Rosen 1958) 

repeated the calculation in quasi-Cartesian coordinates and got the energy 
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and momentum to be finite and reasonable. M0ller (1958) constructed a 

new energy-mometum complex and claimed that one is not anymore bound 

to the use of the quasi-Cartesian coordinates. Only three years after this 

work, M0ller (1961) realized that the total energy-momentum vector of a 

closed physical system is not a Lorentz four-vector in his formulation. How­

ever, the energy density component of the M0ller's complex transforms like 

a scalar density under purely spatial transforamations. 

Cohen and de Felice (1984) calculated the Komar energy in Kerr-Newman 

spacetime and interpreted that to be effective gravitational m<}_ss that a 

neutral test particle present in the field of the Kerr-Newman object expe­

riences through the gravitational interaction. However, switching off the 

charge parameter gives no energy to the exterior of the Kerr black hole. 

Looking into the result of Cohen and de Felice, Kulkarni et al ( 1 988) ar­

gued that a modification of the Komar integral was warranted since that 

did not yield the repulsive effect arising from the rotation. They proposed 

a new definition of the effective gravitational mass of the Kerr black hole 

that incorporated the contribution due to the rotation. 

We believe that so long one does not have a successful localization of 

energy and momentum in general relativistic system, it is desirable that 

the relative merits and demerits of various definitions to give energy as well 

as angular momentum be investigated. The energy and momentum pseu­

dotensors of Einstein, Tolman, Landau and Lishitz (LL), and Moller are 

largely discussed in the literature and we (Virbhadra 1990a, 1990b, 1990c, 
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1991a, 1991b, 1991c) investigated these complexes for the Kerr-Newman as 

well as the Vaidya radiating spacetimes. We have evaluated all the compo­

nents of the energy-momentum pseudotensors of Einstein, Tolman, Landau 

and Lifshitz, and M0ller for the Kerr-Newman (upto the third power of the 

rotation parameter) as well as the Vaidya radiating spacetimes. We (Virb­

hadra 1990a, 1990c) have found that the pseudotensors of Einstein, Tol­

man, and LL give exactly same energy density in Kerr-Newman spacetime, 

whereas that of M0ller gives twice the value obtained using these definitions. 

All these four pseudotensors yield no energy in the Kerr spacetime and the 

entire energy in the Kerr-Newman spacetime is due to the electromagnetic 

field present there. The pseudotensor of LL, being symmetric in indices, can 

be used to evaluate angular momentum in asymptotically fiat spacaetimes. 

We ( Virbhadra 1990c) calculated the same for the K-N spacetime and got 

sensible result. Unlike the case of the K-N field, we (Virbhadra 1991b) have 

found that all these comlexes give the same energy density in the Vaidya 

spacetime. The pseudotensors of Einstein and Tolman gave same result ( 

for all of their components) for the K-N as well as the Vaidya spacetimes. 

Despite their non-tensor character, the aforementioned pseudotensors are 

found to be traceless for both spacetimes. 

Recently Cooperstock and Richardson (1991) have extended our result 

for energy in Kerr-Newman field upto the seventh order of the rotation 

parameter and have found the same relationship that the prescription of 

Einstein, Tolman, and Landau and Lifshitz give same result whereas that of 
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M0ller yields twice the value. They have also pointed out that the Komar 

energy for the R-N metric calculated by Cohen and de Felice does not give 

the correct flat space limit whereas that of Einstein ,Tolman, and Landau 

and Lifshitz do give. 

The energy-momentum complexes discussed above give meaningful re­

sult if the calculations are carried out in quasi-Cartesian coordinates (Kerr­

Schild Cartesian coordinates satisfy the condition of quasi-Cartesian coor­

dinates). An asymptotically flat metric can always be expressed in quasi­

Cartesian coordinates though it may not be in Kerr-Schild form. ll_sing the 

pseudotensors of Einstein, Landau and Lifshitz, and M0ller ( Vaidya, 1952, 

calculated the same in Tolman's prescription), we (Virbhadra 199la) have 

claculated energy in the Reissner-Nordstrom metric ( in quasi-Cartesian 

coordinates though the line-element being not in the Kerr-Schild form) and 

have found that the pseudo tensors of Einstein, Tolman, and M0ller give re­

spectively same result as we obtained for the same spacetime in Kerr-Schild 

Cartesian coordinates. However, the pseudotensor of Landau and Lifshitz 

does not give a consistent result. 

The thesis is organised as follows : the chapters two and three contain 

study of spin dynamics, and the chapters four to six are devoted to the 

study of energy, momentum and angular momentum in curved spacetimes. 

We use the geometized units ( G = c = 1 ) and follow the convention that 

Latin and Greek indices run from 0 to 3 and 1 to 3 respectively. \\'e adopt 

the Einstein summation convention. 
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Chapter 2 

Spin precession of charged particles in 
presence of electromagnetic fields on curved 
spacetime background 

2.1 Introduction 

Einstein had proposed three classical tests of general relativity, namely the 

gravitational red-shift of spectral lines, the deflection of light by the sun, 

and the precession of perihelia of orbits of the inner planets. Various ob­

servations have shown excellent agreement with the theoretical predictions 

bearing out the beauty of the general theory of relativity. In 1964, Shapiro 

proposed a new test of the theory that there is a general relativistic delay 

in time for a radar signal to travel to the inner planets and reflected back 

to the Earth. In 1967, Shapiro, along with some collaborators ( Shapiro et 

al1968 ), conducted experiments which yielded remarkable agreement with 

his theoretical prediction. Schiff (1960) calculated the precession frequency 
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of a gyroscope's spin axis relative to the distant stars when the gyroscope 

moves in a free fall about the massive sphere, and he proposed this for a test 

of general relativity. However, due to many technical problems, this plan 

has not yet succeeded. As the general theory of relativity has witnessed suf­

ficient experimental support, it is accepted as the most satisfactory theory 

for the description of gravitational phenomena. 

An important aspect of the astrophysical phenomena is the role of elec­

tromagnetic fields in the dynamics of charged particles which govern the 

electromagnetic features leading to different kinds of emission me_chanisms. 

Therefore, a detailed knowledge of the dynamical features of charged par­

ticles in presence of electromagnetic fields on a curved spacetime back­

ground is very much desired. Many authors have studied the orbits of sin­

gle charged particles (having no spin) in presence of electromagnetic fields, 

a review of which is presented by Prasanna (1980). However, one knows 

that many charged particles possess spin and therefore it is also desirable 

to understand spin precession since this could also have a bearing on cer­

tain emission features. Bargmann, Michel and Telegdi (1959) discussed the 

spin dynamics of charged particles in flat space background. Prasanna and 

Kumar (1973) did a very limited study of the spin precession of a charged 

particle in Melvin's magnetic universe. In the context of astrophysical ap­

plications it is very desirable to study the orbits as well as spin dynamics 

of charged particles near objects like neutron stars which are enriched with 

high magnetic field and reasonably high spacetime curvature. However, one 
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does not have, as yet, an exact solution of Einstein-Maxwell equations de­

scribing such objects (there is solution for non-rotating magnetic dipole by 

Gutsunaev and Manko, 1987, which is however too lenghthy ). Therefore, 

we have considered few cases, though which are not as realistic as in the case 

of neutron star, gives an understanding of the role of spacetime curvature 

on the spin dynamics of charged particles in presence of electromagnetic 

fields. We ( Prasanna and Virbhadra 1989; Virbhadra and Prasanna 1989, 

1990), using the Papapetrou's equations of spin (Papapetrou 1951) and the 

Anderson's relativistic generalization (Anderson 1967) for a torque acting 

on a spinning charged particle due to electromagnetic field, have carried out 

detailed studies of this subject for various cases and this is the matter of 

discussions in the following. In the flat spacetime limit, our investigations 

yield striking results, as it gives special relativistic correction to the well 

known Larmor precession frequency and further puts a bound to the Lande 

g-factor. 

2.2 Formalism 

The magnetic dipole moment 8 of a charged spinning particle is proportional 

to its spin angular momentum S, given by 

(2.2.1) 
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g,e, and m 0 stand respectively for Lande factor, charge, and rest mass 

of the test paricle. In presence of a magnetic field B, the spin angular 

momentum vector suffers a precession due to a torque acting on it, governed 

through 

dS = .Jl!!_s x B 
dt 2mo 

(2.2.2) 

Anderson (1967) gave the relativistic generalization for the torque acting 

on a charged particle in presence of electromagnetic field: 

(2.2.3) 

where Sik is the spin angular momentum tensor and pik is the electro­

magnetic field tensor. 

On the other hand, even an uncharged particle in a pure gravitational 

field undergoes precession called geodetic (or de Sitter ) precession, gov­

erned through the Papapetrou's equations (1951) of spin 

-- + u· -- - u -- u1 = o DSik [ . DSkl k DSill 
DT DT DT 

and of orbit 

D i DS' 1 ab c i 

[ 

'k l 
DT moU + DT uk + 2 s u R C(lb = 0 

where ui is the velocity four-vector and 

DUi 
= ui uk 

DT - ; k 

12 
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(2.2.5) 

(2.2.6) 



Using the above expressions, one can write the equations of spin and of 

orbit for charged spinning particles moving in presence of electromagnetic 

fields in curved spacetime background as follows: 

(2.2.7) 

(2.2.8) 

where the spin tensor sik and the velocity four-vector ui are orthogonal 

to each other as prescribed by Pirani condition: 

(2.2.9) 

We (Prasanna and Virbhadra 1989) have expressed the equations of spin 

and orbit in a rather convenient form: 

dSi [ · k · ) · e [ · · k] · -d = - f 1 ikU + U1 L.; SJ + -- gFi 1 
- (g- 2) F;kU'U. SJ (2.2.10) 

T 2 mo 

dUi = -ri .kuiuk- _!!_pikuk + -r,i 
dT J mo 

(2.2.11) 

where Si is the spin four-vector given by 

1 '"kl 
&

1
] s u - '- 'k I 2 ] 

(2.2.12) 
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and 

(2.2.13) 

As a first approximation, we have neglected the spin curvature inter­

action terms as well as the second order derivative of the spin terms by 

ignoring ~i and then consider the equations 

dSi i sj 
-=a. 
dT 3 

(2.2.14) 

with 

i r; Uk e [ F i ( ) F uiuk] a j = - ik + 2 mo g j - g - 2 ik 
(2.2.15) 

and 

(2.2.16) 

2.3 Static spacetimes endowed with electro­
magnetic fields 

We have studied the spin precession frequency of charged particles in the 

following situations: 

(a) Magnetic field, dipolar at infinity, superposed on a Schwarzschild 

background. Ginzburg and Ozernoi (1965) found a solution fort he :Maxwell 

equations on the Schwarzschild background which is expressed in terms of 

the vector potential given by (Prasanna and Varma 1977) 
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3J.Lsin
2

()( ( 2M) l A,p = -
3 

r 2 ln 1 -- + 2A1 (r + Af) 
8 M r J 

(2.3.17) 

The Schwarzschild spacetime in Schwarzschild coordinates is expressed 

by the line-element: 

(2.3.18) 

where J.L and M stand for the magnetic dipole moment and the Schwarzschild 

mass respectively. 

(b) A uniform magnetic field, superposed on Schwarzschild background 

which is given by the Wald solution (Wald 1974; Prasanna and Vishvesh-

wara 1978). 

(2.3.19) 

where B0 stands for the magnetic field parameter. 

(c) A spherically symmetric charged massive object. The solution of 

Einstein-Maxwell equations for this case is the well known Reissner- Nord­

strom solution (Hawking and Ellis 1987), given by the line-element: 
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and the vector potential A; =(At, 0, 0, 0) with 

Q 
At=­

r 
(2.3.21) 

where M and Q stand for mass and charge parameters of the cen­

tral object. It is clear that switching off the charge parameter gives the 

Schwarzschild solution. 

(d) A Schwarzschild object embedded in a uniform magnetic field. Ernst 

(1974) gave a solution for the corresponding Einstein-Maxwell equations as 

expressed by the axisymmetric line-element: 

2 2 [( 2M) 2 ( 2M) -I 2 2 2] -2 2 . 2 2 dr =A 1 - -r- dt - 1 - -r- dr - r dB -A r sm Bd</J 

(2.3.22) 

with the vector potential given by 

Br 2 sin2 B 
A,p = A (2.3.23) 

where 

(2.3.24) 

and 

(2.3.25) 

M and B 0 stand respectively for the mass and the magnetic field pa­

rameters. Unlike the case of the Wald solution which is the solution of the 
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Maxwell equations on Schwarzschild backgound, the Ernst solution is the 

solution of the Einstein-Maxwell equations and this incorporates the effects 

of the magnetic field on the spacetime curvature. 

2.4 Calculations 

Confining our attention to the particles in circular motion on the equatorial 

plane (B = ~) as prescribed by un = U8 = 0 at r = R, the orbit equation 

along with the orthonormality relation g;jUiUj = 1, define the orbital fre­

quency U<l>. For the physical situations under investigations (mentioned in 

the last section), one has the orbital equation: 

(2.4.26) 

with 

(2.4.27) 

where all the functions are evaluated at r = R, the radius of the circular 

orbit. 

For all the cases described in the earlier section, one has the spin equa­

tions for particle on the equatorial plane ( (} = ~) to be 

17 

.. 



dSt -_ -rt (stur + srut) + e [ tt D sr ( )Ut { D (stur dT rt 2mo g g r rt - g - 2 r tr 

(2.4.30) 

(2.4.31) 

As S8 does not appear in other equations except in (2.4.30), one can 

without loss of generality consider it to be zero so that dS0 jdT = 0. \Ve 

confine our attention to particles in circular orbits. The relevant spin equa­

tions for the physical situations under investigation are 
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(2.4.32) 

(2.4.33) 

with 

(2.4.34) 

The polar coordinates have an inherent rotation with respect to Carte­

sian coordinates. Since we are looking for the effective spin precession, it 

is best to get rid of this inherent rotation of the coordinate system by go­

ing over to the Cartesian coordinates. Therefore, we have rewritten the 

spin equations in terms of the components of the spin vector in Cartesian 

coordinates: 

SY = sR sin¢ + RS"' cos ¢, 

(2.4.36) 
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The relevant spin equations in terms of Cartesian components are: 

with 

(2.4.39) 

Further solving them, we have found the spin precession frequency w .• 

which is given by 

where 

L1 
191 = -, 

R 

192 = R L2 

(2.4.40) 

(2.4.41) 

Using the above, we have further evaluated the orbital as well as spin 

precession frequencies for the cases described in the last section. 
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(a) Schwarzschild background with superposed magnetic field (which is 

dipolar at infinity). 

The orbital frequency 0 (0 = cU<P) is given by 

2 
3eJ.L A1 

(R- 3M) n - FnO- - = 0 
2M 2m 0 R2 

(2.4.42) 

and the spin precession frequency w8 is given by 

(2.4.43) 

with 

Fn = ( 2~ - 1) ln ( 1-
2
:) + ( 1- ~) (2.4.44) 

As in the subsequent chapter, we will discuss the spin precession in local 

Lorentz frame, we are using the word global here for distinction. 

(b) Schwarzschild background with superposed uniform magnetic field: 

The orbital frequency 0 is given by 
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2 eBR ( 2M) M (R- 3M) n + - 1- - n- - = o 
mo R R 2 

and the spin precession frequency is given by 

(c) Reissner-Nordstrom field: 

The orbital frequency 0 is given by 

with 
2M Q2 

u=1--+­R R2 

and the spin precession frequency W 8 is given by 

(2.4.45) 

(2.4.46) 

(2.4.4 7) 

(2.4.48) 

(w )2 = ( _ 2) [eQU<Pl
2 

[ 1 2moRut (3A1 _ 2Q
2

)] ( 4 ) 
a global 9 9 2moR + 9eQ R R2 2 . .49 
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(d) Ernst field: 

The orbital frequency 0 is given by 

[(R- 3M)- (A- 1)(3R- 5M)] 0 2 + 
2

AeB (R- 2M) 0 
mo -

-A2 [M + 2(A- 1) (1- 3A1)] = 0 (2.4.50) 
R2 R 2R 

and the spin precession frequency is given by 

+ (w 2)geod 
8 

global 
(2.4.51) 
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with 

(2.4.52) 

2.5 Discussion 

It is well known that the non-relativistic value for the ratio of the spin 

precession frequency to the orbital frequency of a charged spinning particle, 

moving in a circular orbit in presence of a magnetic field, is g /2 (g stands 

for the Lande g-factor). Expressed through (2.4.42) to (2.4.52) are the 

spin precession frequency and the orbital frequency for a charged spinning 

particle moving in a circular orbit on equatorial plane of a compact object 

endowed with electromagnetic fields. Cases (a) and (b) deal with dipole 

and uniform magnetic fields respectively, wherein the spacetime curvature 

due to the compact massive object modifies the magnetic field but the 

magnetic fields are too weak to contribute to the spacetime curvature. The 

expressions obtained for the spin precession frequency Wn and the orbital 

frequency n contain terms due to the gravitaional as well as the purely 

special relativistic effects. The case (d) again deals with a uniform magnetic 

field wherein, however, the magnetic field is strong enough to contribute to 

the spacetime curvature. 
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Fig. 1 : The ratio of the spin precession frequency to the orbital fre­

quency versus the radial distance of the test particle (electron) from the 

central object of one solar mass is plotted for magnetic fields B = 10-9 (!), 

I0-8 (II), 10-7(III), 1Q-6(IV), 10-5 (V) Gauss for the Wald and the Ernst 

cases. 
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Fig. 2 : The ratio of the spin precession frequency to the orbital fre­

quency versus the radial distance of the test particle (proton) from the 

central object of one solar mass is plotted for magnetic fields B = 10-6 (1). 

10-5(II), 10-4(III), 10-3 (IV) Gauss for the Wald and the Ernst cases. 
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The figures (1) and (2) present the variation of ws/D with respect to 

R/M for various magnetic field strengths for electron (g = 2.0023) and 

proton (g = 5.59) for the Wald as well as the Ernst cases. The curves 

reach asymptotically their approximate value g /2 for v « c for the Wald 

case (asymptotic value differs from g/2 due to special relativistic effect). 

Near the central object, due to the spacetime curvature, the value for w./D. 

differs appreciably from its flat space value. A decrease in magnetic field 

decreases the spin precession frequency more than it decreases the orbital 

frequency, so that their ratio W 6 /D decreases with the decreases in the 

magnetic field. One can see clearly that for the Wald case the asymptotic 

value for w./D goes beyond the non-relativistic value 9/2 due to special 

relativistic effect. However, it is interestinig to note that for the Ernst 

case (where the magnetic field contributes to the spacetime curvature and 

therefore the spacetime is not asymptotically flat), it seems to saturate 

near g/2 value. Near the central object, the ratio of the frequencies for the 

Ernst case is more than that of the Wald case for the same magnetic field 

strength and the radial distance. The plots (1) and (2) are for the electron 

and proton respectively, which are meant to study the behaviour of test 

particles of different specific charge ( ejm0 ) and Lande g-values. For the 

same magnetic field and the radial distance (near the central object), w.jn 

for proton is much less than that of electron. The role of the spacetime 

curvature to decrease the value of W 6 /D from its non-relativistic value is 

more for the proton than for the electron. 
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By the expression obtained for the spin precession frequency of the 

test particle in the Reissner-N ordstrom field (case c), it is clear that the 

frequency decreases rapidly with the increase in the radial distance of the 

test particle from the central object. One gets two terms for the spin 

precession frequency, the first term is purely special relativistic whereas 

the second term is general relativistic. The special relativistic contribution 

to the spin precession frequency is inversely proportional to the rest mas 

of the test particle. Though the spacetime is not fiat at r = 2Q
2 
/3A1, it 

is curious to note that the general relativistic effect on the spin precession 

frequency vanishes dramatically at this radial distance. 

In fiat space limit, for cases (a) and (b), one gets 

(Wa) 9 [ ( 2) 2 2] ~ fl MS = 2 1 + l- g V / 
(2.5.53) 

MS stands for the magnetostatic case and 1 is the Lorentz factor ( 1 -

V2 )- 112 • It is clear from the expression (2.4.43) and (2.4.46) that one gets 

a special relativistic correction to the well known Larmor precession fre­

quency given by 

(2.5.54) 

for the magnetic dipole field (case a) 
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and 

(2.5.55) 

for the uniform magnetic field (case b). 

The special relativistic term is proportional to a factor which depends on 

the kinetic energy of the test particle. For particle having 9 = 2, the special 

relativistic term dramatically vanishes. For 9 < 2, the special relativistic 

term decreases the spin precession frequency whereas for particles with 

0 > 9 or 9 > 2, it increases the frequency. However, as all the known 

charged particles have 0 > 9 or 9 > 2, the special relativistic effect is to 

increase the Larmor frequency. 

The spin precession in the Reissner-N ordstrom field (case c) is a pur~ly 

relativistic effect. In the flat space limit, 

w, 9 2 2 

( ) 

1/2 

( 0) ES = 2 l - g V I (2.5.56) 

ES stands for the electrostatic case. It is clear that this result is ap­

plicable only to particles having 9 < 0 or 9 > 2. However, one does not 

have, as yet, any experimentally observed particle which lies in the range 

0 < 9 < 2. In passing, it is worth citing a discussion by Cohen and Mustafa 

(1986) that the Dirac quantum theory predicted g = 2 for the electron 

though it was not clear if the result were special relativistic or quantum 

mechanical. They further cited (Sakurai 1967) that Feynman had shown 
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that one can get for the electron g = 2 from the non-relativistic quantum 

mechanics alone. Therefore, it appears from our investigation that special 

relativity puts a bound to the Lande g-value in a natural way. 

Though the calculations have been carried out in a fully general rela­

tivistic prescription, it is clear from the expressions for the spin precession 

frequency that the purely geodetic terms have not appeared explicitly in 

this treatment (excluding the Ernst case which is not an asymptotically 

flat metric). However, when we have introduced local Lorentz frame, the 

purely geodetic terms have appeared explicitly along with the ~ther terms 

(to be discussed in the subsequent chapter). 
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Chapter 3 

Spin precession of charged particles in local 

Lorentz frame 

3.1 Formalism 

In the previous chapter, we have seen that the purely geodetic effects do 

not appear in the spin precession frequency of a charged particle moving in 

presence of electromagnetic field in curved spacetime background (except 

in the case of the Ernst spacetime). Therefore, it is very much desirable 

to see if the purely geodetic terms appear when the present investigation 

is extended to local Lorentz frame. This is the subject of discussion in this 

chapter. We begin with a discussion of the local Lorentz tetrad as discussed 

by Weinberg (1972). 

The principle of equivalence allows one to erect, at every point X, a set 

of coordinates 'ljJ )a) which are locally inertial at that point. In any general 

non-inertial coordinate system, a metric is 

31 



(a) (b) 
9ik = ). i ). k 7J(ab) (3.1.1) 

where 

(3.1.2) 

>. (7) is a set of four linearly independent covariant vector fields which is 

called a tetrad. The index in the bracket is the tetrad index which runs 

from 0 to 3. These four-vectors, so long they are linearly independent, can 

be of any length and can have any angle among themselves. 

Under a general non-inertial coordinate transformation, a tetrad com-

ponents transform as following: 

(3.1.3) 

Consider a contravariant vector field Vi, then the corresponding tetrad 

components are given by 

(3.1.4) 

Vi is a single four-vector whereas V(a) are four scalars in a locally inertial 

frame. Similarly, the tetrad components of a covariant vector V; are given 
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by 

v(b) A(b) ' V; (3.1.5) 

where 

A i ikA(a) 
(b) = T/(ab)9 k (3.1.6) 

with 

A(~) A k = 5. k 
' (a) ' 

A(a) A i - b(a) 
i (b) - (b) (3.1.7) 

and 

i k 
A(a) A(b) 9ik = T/(ab) (3.1.8) 

Similarly, the tetrad components of a general tensor can be obtained by 

T(u)(b).... _ Tij... A (a) A (b)_ A k A I 
(m)(n) .... - kl.. • J (m) (n) ·········· (3.1.9) 

3.2 Calculations 

We are interested in calculating the spin precession frequency for a charged 

particle in presence of electromagnetic field on curved spacetime back-

ground. We have considered a test particle to be moving in a circular 

orbit on the equatorial plane of the compact object. Further without loss 

33 



of generality, we have taken the 8 component of the spin vector to be zero 

(see equations 2.4.28-31 and the discussion following this). As we are in­

terested in finding the spin precession frequency in local Lorentz frame, we 

obtain local tetrad components of the spin vector through 

S(R) = ). (R) R 

(3.2.10) 

S6 component has been considered to be zero. The tetrad co-mponents 

>. (7) are obtained through the relation 

(3.2.11) 

As we have already discussed in the last chapter that the polar coor­

dinates have inherent rotation with respect to the Cartesian coordinates 

and therefore we rewrite the tetrad componets in terms of their Cartesian 

components, which are given below: 

s(x) = s(Rlcos¢- RS(<i>lsin¢, 

s(v) = S(R) sin¢+ RS(<i>) cos¢ (3.2.12) 

Using (2.4.32-33), (3.2.9), and (3.2.11), one rewrites the spin equations 
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in local Lorentz frame as: 

dS(x) 

dr 

and 

S(x) cos¢ sin¢ ~ + S(y) { cos 2 ¢ ~ 

dS(Y) - 1 [s(:r.) { 2,+., " 
d - (R) (</>) COS '+' u + 

T R>.R>.</> 

+ S(Ylcos¢ sin¢ ~J 

with 

(3.2.14) 

(3.2.15) 

Solving them one gets the spin precession frequency in local Lorentz 

frame, which is given by 

(3.2.16) 

with 
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(3.2.17) 

where L 1 and L 2 are given by (2.4.34) and (2.4.35) respectively. Using 

the above, the spin precession frequency in local Lorentz frame for the phys­

ical situations discussed in section (2.3) have been evaluated ( Virbhadra 

and Prasanna 1991) which are given in the following. 

(a) Schwarzschild background with superposed magnetic field dipolar 

at infinity: 

[w2] = 
• local 

(
w 2) + {w 2 }gcod+ 3ep,FR ( 1 _211/)-lu¢ 

• global • "''" 4m0 !112 R R 

[ 2g { ( 1 - 2~f) -l/2 - ( 1 - ~)} 

+ (g _ 2)(Ru•)' { (1 _ 2~(- 1 }] 

(3.2.18) 

where (w
3

)globol and FR are respectively given by (2.4.43) and (2.4.44). 

{w.}~;: stands for the purely geodetic spin precession frequency in Schwarzschild 
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field, which is given as following: 

{ 
2 }gcod [( 3A1) ( 2A1) -I/

2 
( 5M)] 2 

w. Sch = 2- R - 1- R 2- R u"' (3.2.19) 

(b) Schwarzschild background with superposed uniform magnetic field: 

The spin precession frequency of a charged particle in local Lorentz 

frame for the Wald case is given by 

(w2) + {w; }ueod + 
8 global Sch 

[ { 1 - ( 1 _ 
2
:) I/'} { 1 + ( 1 - ~) R'~>'} ... ~ l 

(3.2.20) 

(w.)global for the Wald case is given by (2.4.46) and {w.}~~~:l is given by 

(3.2.19). 

(c) Reissner-Nordstrom field: 

[w2} = 
8 locnl 

( 
2)R-N + 

W" globnl { 
2}gcod 

w. + 
R-N 
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where (w.)~~~ is given by (2.4.49) and {w;}~~N is the purely geodetic 

spin precession frequency in the R-N field, which is given by 

(3.2.22) 

(d) Ernst field: 

The spin precession frequency in the local Lorentz frame is given by 
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[ ( 2M) { ( 2!.1) 1

/

2 !.1}]] 
X (4- 3A) 1- R -A A

2 
1- R + R 

{ 
2 }geod 

+ w, 
Ern•t local 

(3.2.23) 

where the last term {w;}~:.t local stands for the purely geodetic preces­

sion frequency in the local Lorentz frame which is given by 

{ 
2 }gt!od 

W 8 Ern•t locul 

U(<P)
2 

[(A- 2)(3A- 4) ( 2J.f) J.f(A- 2) I \3 
~ A3 1 - R + RA 5 I J 

+ 

(3.2.24) 

with 

(3.2.25) 

3.3 Discussion 

Expressed through equations (3.2.18) to (3.2.25) are spin precession fre­

quencies in local Lorentz frames for different cases. Switching off the charge 

parameter of the test particle, one had noted in the previous chapter that 

the expressions for the spin precession frequencies in the global frame for 

39 



the first three cases vanish whereas for the case of the Ernst spacetime, 

one gets non-vanishing terms given by (2.4.52). However, in local Lorentz 

frames one gets purely geodetic terms (along with other terms) in all these 

cases given by (3.2.19), (3.2.22)(3.2.24). It is clear that Q = 0 in (3.2.22) as 

well as A = 1 in (3.2.24) give (3.2.19) as expected. Both in Schwarzschild 

and R-N geometries, which are asymptotically fiat, the geodetic terms ex­

plicitly manifest only in local frames whereas in the Ernst geometry (which 

is not asymptotically fiat), the purely geodetic term appears even in global 

frame. In the Reissner-Nordstrom and the Ernst spacetimes, the electro­

static and the magnetostatic fields respectively contribute to tne curvature 

of the spacetime which are clearly reflected in these results. It is interesting 

to note that the purely geodetic spin precession frequencies are found to be 

proportional to the respective orbital frequencies of the test particles for 

all the cases we have investigated. 

It would indeed be interesting to extend the calculations to the case of 

non-circular orbits as well as for orbits off the equatorial plane. As we have 

neglected the non-linear spin-orbit coupling terms, it could be interesting 

to see the effects on the spin precession when these are included. Moreover, 

it is not clear to us why the purely geodetic terms do not appear in the 

expressions for the spin precession frequency in global frame except in the 

case of the Ernst field. This requires further serious investigations. 
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Chapter 4 

Energy and angular momentum in 
Kerr-Newman spacetime 

4.1 A brief history of energy-momentum lo­
calization in general relativity 

It is well known that the conserved quantities such as energy, momentum, 

and angular momentum have their significant role in physics as they provide 

the first integral of equations of motions. However, their localization in a 

field have been a problematic issue. The localization of energy-momentum 

in curved spacetime has been a subject of extensive research since the outset 

of general relativity. Though an adequate localization would have immense 

advantages, the status is that one does not have that as yet. There are, 

however, mutually opposing views that authors share regarding a possibility 

of successful localization of energy and momentum in general relativistic 

systems. Misner, Thorne, and Wheeler (1973, p467) argued that to look 
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for a local gravitational energy-momentum is looking for the right answer to 

the wrong question. Many resarchers believe that only the total energy and 

mometum of asymptotically flat spacetimes make physical sense. Misner, 

Thorne, and Wheeler, however, concede that for spherical systems, the 

gravitational potential energy is correct and meaningful (Lynden-Bell and 

Katz 1985; Misner Thorne and Wheeler 1973, p603).However, Cooperstock 

and Sarracino (1978) believe that if the energy localization is meaningful in 

spherically symmetric systems, it is certainly meaningful for systems which 

are not spherically symmetric. 

Bondi (1990) has written, "In the newtonian theory the notion of grav­

itational potential energy is used with ease to describe exchanges between 

gravitational and other forms of energy, though its non-localizability occa­

sionally causes difficulties and it is not adequate to describe certain transfer 

of energy". He has further added, "In newtonian theory, the essential char­

acteristic of energy is that it is conserved. Its location does not directly 

reveal itself because it contributes neither to inertia nor to gravitation. It 

is therefore entirely acceptable to use the device of potential energy, which 

ensures conservation at the price of being non-localizable. In relativity, a 

non-localizable form of energy is inadmissible, because any form of energy 

contributes to gravitation and so its location can in principle be found". 

In flat spacetime, the energy and momentum conservation law is given 

by 
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(4.1.1) 

where Tik stands for the energy-momentum tensor appearing as source 

term in Einstein-Maxwell equations. However, in the presence of gravita­

tional field the above is generalized as following: 

T~-k = 0 (4.1.2) 

Bondi ( 1990) has stated that nevertheless the vanishing of cm:?-riant di-

veregence of energy-moment urn tensor is often called a conservation law, 

in fact it is a law of non-conservation. The reason is that in presence of 

gravitational field, merely the four momentum of matter cannot be con­

served. What can be conserved is the four momentum of matter plus the 

gravitational field. Therefore, what one requires is 

(4.1.3) 

T;k stands for the matter energy-momentum tensor whereas F; k is given 

by the usual Lagrangian density L as following: 

;--;, k 1 [ 8£ pq k l 
v -9 F; = l67r a9r:k 9 ,i - 9; l (4.1.4) 

Einstein (M0ller 1958) gave an expression for the total energy-momentum 
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(matter plus field) complex which is however a pseudotensor. Due to the 

non- tensorial character of the energy-moment urn pseudotensor, it was not 

taken seriously. Schrodinger could find a coordinate system in which all the 

components of the pseudotensor vanished for the Schwarzschild spacetime 

(Goldberg 1958). However, Einstein defended his pseudotensor by showing 

that the total energy-momentum transforms like a free four-vector under 

linear coordinate transformation (Goldberg 1958). Eddington showed that 

there is an agreement between the pseudotensorial energy flux and the ra­

diation damping of a radiation source which again favors importance of 

the pseudotensor (Eddington 1965, Cooperstock and Lim 1987)." Follow­

ing a hypothetical discussion between Sagredus (who presents the ortho­

dox view) and Salvaties (who attempts to show that the orthodoxy should 

reexamine its case), Palmer (1980) discussed the importance of the Ein­

stein's energy-momentum pseudotensor in detail. After Einstein's energy­

momet urn pseudotensor, a fairly large number of prescriptions for energy 

in a general relativistic system have been proposed by many authors, e.g; 

Tolman (1930), Landau and Lifshitz (1985), Papapetrou (1948), Gupta 

(1954), M0ller (1958), Goldberg (1958), Bergmann (1958), Dirac (1959), 

Komar (1959, 1962, 1963), Arnowitt et al.(1961), Bondi et al (1962), Hawk­

ing (1968), Weinberg (1972), Witten (1981), Penrose (1982), Lynden-Bell 

and Katz (1985), Nahmad-Achar and Schutz (1987a, 1987b), Kulkarni et al 

(1988), Bartnik (1989), and Katz and Ori (1990) etc. Using Tolman's defini­

tion of energy, Vaidya (1952), after he found solution of Einstein's equations 

for a spherically symmetric radiating star, calculated energy associated with 
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a general non-static spherically symmetric spacetime. This gives energy in 

the Reissner-Nordstrom as well as the Vaidya radiating spacetimes. The 

result shows that there is no energy associated with Schwarzschild field and 

therefore the entire energy associated with the Schwarschild black hole is 

confined to its interior only. However, in the Reissner-Nordstrom case, the 

energy is shared by its interior as well as its exterior. 

The energy-mometum pseudotensors of Einstein as well as Tolman have 

mixed indices and raising them with a metric tensor does not yield a 

symmetric object. However, to calculate angular momentum!. a symmet­

ric energy-momentum complex is required. Landau and Lifshitz (1985) 

constructed a symmertic energy-momentum pseudotensor which, however, 

transforms like a vector density. Goldberg (1958) constructed two hier­

achies of energy-momentum complexes O(n3i and L(,:r They transform like 

tensor densities of weight ( n + 1) and ( n + 2) respectively under linear coor­

dinate transformations and again for n = 0 they yield the energy-mometum 

pseudotensors of Einstein and Landau and Lifshitz (LL) respectively. 

He discussed that (a) for the total energy and momentum to form a 

free vector, the energy and momentum pseudotensor of Einstein O(~)i is the 

desired quantity and similarly the total angualar momentum to be free anti­

symmetric tensor, the appropriate quantity is L(_i~) which differs from that 

of LL and Bergmann and Thomas (1953), and (b) all the mixed quantities 

0( .. / have the same physical content (energy and momentum) whereas the 

symmetric ones are all different in their physical content. Further he added 
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that amomg all the symmetric quantities, only the LL pseudotensor has 

the same energy and momentum as that of Einstein. 

One knows that the energy-momentum pseudotensors of Einstein, Tol­

man, and Landau and Lifshitz can yield meaningful result only if the cal­

culations are carried out in quasi-Cartesian coordinates (that in which in­

creasing spatial distance convereges the components of the metric tensor to 

their values of special relativity). 

It is worth discussing here that using LL pseudotensor, Rosen (1956) 

evaluated the energy and momentum of cylindrical gravitationar- waves in 

Cylindrical polar coordinates. He found that the waves in empty space 

do not appear to carry energy and momentum. This result was again 

confirmed by Weber and Wheeler (1957). When Rosen (1958) realized that 

the pseudotensor should be evaluated in quasi-Cartesian coordinates, he 

evaluated the same in quasi-Cartesian coordinates and found the energy 

and momentum associated with the gravitational waves to be finite and 

reasonable. 

However, the evaluation of energy-momentum pseudotensors of Ein­

stein, Tolman, or LL in quasi-Cartesian coordinates is usually very lengthy 

to work out. Moreover, M0ller (1958) argued that singling out a particu­

lar coordinate system (i.e; quasi-Cartesian) is somehow unsatisfactory from 

the standpoint of general relativity. However, he agreed that it does not 

seriously affect the usefulness of the Einstein's expression for the total en-
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ergy and momentum of closed physical systems. Further he said that for 

non-closed systems , the pseudotensor of Einstein does not give consistent 

result for energy. Realizing this problem, he (M0ller 1958) constructed a 

new energy-momentum pseudotensor and claimed that one is not anymore 

restricted to the use of quasi-Galilean coordinates. Further he discussed 

that the energy density component in his prescription transforms like a 

scalar density under purely spatial transformations. Komar (1959) con­

structed a set of covariant laws in general relativity. Only three years after 

the new energy-momet urn was proposed, M0ller realized that unlike the 

case of the Einstein's pseudotensor, the total energy-momentum vector of 

a closed physical system in his prescription does not transform like a four­

vector under Lorentz transformations. Later Kovacs (1985) showed that 

M0ller was wrong in concluding that. However, Novotny (1987) pointed 

out the mistake of Kovacs and wrote that M0ller was correct to say that 

the energy-momentum vector in his definition is not a Lorentz four-vector. 

Weinberg (1972) constructed a new energy and momentum complex and 

calculated the total energy and angular momnetum in Kerr metric which 

are M and M a respectively (M and a stand for the mass and rotation 

parameter in Kerr metric). 

Beig (1978) showed for a stationary, asymptotically flat spacetime that 

the Komar energy (associated with a time like Killing vector) and the ADM 

energy are equal if the latter is calculated on a Cauchy surface which is 

asymptotically at rest relative to the Killing vector. Further he discussed 
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the implication of the result on the problem of positivity of energy in general 

relativity. Ashtekar and Magnon-Ashtekar (1979) showed that for isolated 

gravitating systems, the difference between the ADM (Arnowitt, Deser, 

and Misner 1961) four-momenta and the Bondi four-momenta (Bondi et 

al 1962) associated with a retarded instant of time is equal to the four­

momentum carried away by the gravitational radiation emitted between 

the infinite past and the given retarded instant. Persides (1979) showed 

that the LL pseudotensor gives the Bondi four-momentum at null infinity. 

Using Komar's definition of energy, Cohen and de Felice (19~4), evalu­

ated energy in the Kerr-Newman (K-N) spacetime and found the energy to 

be shared by the exterior as well as the interior of the K-N object. How­

ever, switching off the charge parameter, they found no energy shared by 

the exterior of the Kerr black hole. The energy in the Reissner-N ordstrom 

spacetime is M - Q2 / R whereas that obtained in Tolman's prescription 

(calculated by Vaidya 1952) is M - Q2 j2R. Cohen (1967, 1968) found 

angular momentum of a Kerr black hole to be -M a. 

Tod (1983) calculated the Penrose quasi-local mass for the Reissner­

Nordstrom (R-N) and Friedman-Roberson-Walker metrics. The energy so 

obtained for the R-N metric is the same as found by Vaidya (1952) in 

Tolman's prescription. Using the Penrose definition of mass, Tod (1985) 

showed that a static black hole satisfies the inequality A ~ 161rAf2 where 

A is its area. Recently he (Tod 1990) has calculated the Penrose mass for a 

Cylinder of finite length in a cylindrically symmetric spacetime. He found 
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that for a cylindrically symmetric gravitational pulse, the mass associated 

with a finite cylinder rises and falls with the passage of the wave. 

Based on some physical arguments, Lynden-Bell and Katz (1985) showed 

that the static spherical systems have a coordinate-independent gravita­

tional field energy-density which shows that the entire field energy for the 

Schwarzschild object remains outside its horizon. Comparing their result 

with those of Penrose, Witten, and Horowitz and Strominger, they wrote, 

"The Penrose mass of a Schwarzschild hole is all within the hole, whereas 

ours is all outside it, see Tod (1983). Witten (1981) has given 9:. positive 

definite expression for energy in relativity which has been generalized by 

Horowitz and Strominger ( 1983). Both give expressions as integrals of pos­

itive quantities which one might be led to interpret as energy densities. 

Witten's expression does not have our matter term in its classical limit; 

this can be obtained by taking n = 2 in Horowitz and Strominger's expres­

sion but evaluating their integrand in Schwarzschild spacetime leads to a 

different energy density with part of the mass left outside the hole". Fur­

ther Katz, Lynden-Bell, and Israel (1988) showed that the energy within 

equipotential surfaces in any spacetime is also well defined. The subject of 

gravitational energy density is a controversial issue even in simple case of the 

spherically symmetric objects. To this end, Nahmad-Achar (1987) showed 

that one can also give physical arguments by which the entire energy in 

the Schwarzschild object should be within the hole's horizon. Gr0n (1986) 

expressed the covariant definition of gravitational field energy density pro-
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posed by Lynden-Bell and Katz in terms of the Israel's theory of surface 

layers in general relativity. He obtained an expression for the gravitational 

field energy in a static spherically symmetric spacetime which gives the 

same result for the Reissner-Nordstrom spacetime in isotropic coordinates 

as found using the Einstein's pseudotensor. 

Dadhich and Chellathurai (1986), using the Lynden-Bell and Katz in­

variant definition for gravitational field energy, calculated the field energy 

density for a charged object. They found that the energy is shared by the 

interior as well as the exterior of the hole and for a maximally SJ'mmetric 

charged black hole (M = Q), the energy is shared equally by the interior 

and the exterior of the charged object. Further for the energy inside and 

outside of a charged black hole, they established a complementary relation­

ship between the definition of Penrose and Lynden-Bell and Katz. 

Nahmad-Achar and Schutz (1987a) generalized the method of Persides 

which allows an asymptotic evaluation of the energy, momentum, and an­

gular momentum in general relativistic systems in any coordinate system. 

They evaluated energy associated with a Kerr black hole and found the 

total energy of the system to be shared by its interior as well as exte­

rior. However, switching off the rotation parameter gives the energy of 

a Schwarzschild black hole which is confined to its interior only. Further 

they (Nahmad-Achar and Schutz 1987b) developed and proved extremum 

theorems for angular momentum of solutions of Einstein's equations and 

discussed their usefulness in detail. Cohen and de Felice (1984), using the 
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prescription of Komar, found that there is no energy in the exterior of the 

Kerr black hole. Kulkarni et al (1988) argued that a modification of the 

Komar integral was required since that was not sensitive to the repulsive 

effect arising from the rotation. They gave a definition of the effective 

gravitational mass of the Kerr black hole that incorporates contribution 

due to the rotation and that agress with Komar integral asymptotically. 

Using the above definition, Chellathurai and Dadhich (1990) have recently 

evaluated the effective mass of a Kerr-Newman black hole and a Kerr black 

hole embedded in magnetic field. They have found that the rotation on the 

hole decreases the mass, being least at the horizon and goes to zero for the 

extremal case (M2 = a 2 + Q2 ). However, the magnetic field in the case of 

the magnetized Kerr black hole increases the effective mass. 

Using the Einstein spacetime as a reference space, Horowitz and Katz 

(1988) defined energy for the Robertson-Walker spacetime and showed it to 

be equivalent to the dilation operator. They said that their investigation 

leads to a useful formulation for the dynamics and for a quantum field 

theory on a classical Robertson-Walker spacetime and it also gives a basis 

for a microcanonical entropy. Bartnik (1990) proposed a new definition of 

quasi-local mass function in general relativity which he said to be uniquely 

defined, manifestly non-negative, and increases with increase in domain. He 

found the mass function to agree with the Schwarzschild mass for spherically 

symmetric spacetimes. 

Many authors (Schoen and Yau 1979, Nester 1981, Horowitz and Perry 
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1982, Jezerski 1989) discussed the positivity of gravitational mass in de­

tail. Bonnor and Cooperstock (1989), modelling the electron as a charged 

sphere obeying Einstein-Maxwell theory, pointed out that it must contain 

some negative rest mass. The total active gravitational mass within the 

sphere being negative questions one of the assumptions made in singulari­

ties theorems of general relativity. 

We (Virbhadra 1990a, 1990b, 1990c) have calculated energy in Kerr­

Newman spacetime in the prescriptions of Einstein, Tolman, Landau and 

Lifshitz(LL), and M0ller, and angular momentum in the same~spacetime 

using the LL pseudotensor. We have carried out the calculations upto the 

third power of the rotation parameter. Recently Cooperstock and Richard­

son (1990) have calculated energy in Kerr-Newman spacetime upto the 

seventh power of the rotation parameter. Further they have succeeded in 

obtaining an exact expression (without neglecting higher orders of rota­

tion parameter) for energy in the same spacetime in Tolman's prescription. 

These are the subjects of discussion in the following sections of this chapter. 

4.2 Energy-momentum pseudotensors 

A large number of energy-momentum complexes have been proposed by 

many authors. However, we have considered pseudotensors of Einstein 

(M0ller 1958), Tolman (Tolman 1930; Vaidya 1952), Landau and Lifshitz 

(1985), and M0ller (1958). These pseudotensors which are given below are 
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well known quantities as these are extensively discussed in the literature. 

(4.2.5) 

(9 stands for the determinant of the metric). 

t k 1 [ r-;, { li yi + 1 i lrn yi }] 
i == 81r Y -9 -9 kl 2 9 k 9 lm ,j 

(4.2.6) 

with 

. . 1 . 1 . 
V' - f' + ' rm + - ' rm jk - - jk 2 9 j mk 2 9 k mj 

(4.2.7) 

( 4.2.8) 

(4.2.9) 

0/, t/, Lik, and ~ k are energy-momentum complexes of Einstein, Tol-

man, Landau and Lifshitz, and M0ller, respectively. 
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4.3 Kerr-Newman metric 

The exterior gravitational field of a completely gravitationally collapsed 

charged rotating object is described by an axisymmetric, stationary metric 

which is asymptotically flat. Such an exterior field is given by the well 

known Kerr-Newman metric which in Ke.rr-Schild Cartesian coordinates is 

given by the line-element: 

+ 
]

2 
To a 

2 2
(xdx+ydy)+ 

2 2
(xdy-ydx) 

To+ a To+ a 
( 4.3.10) 

where To is defined by 

(4.3.11) 

with x2
+y2 +z2 = T

2 (Tis the spherical radial coordinate). Q = 0 gives 

the Kerr metric whereas a = 0 gives the Reissner-N ordstrom metric. 
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4.4 Calculations 

It is well known that the energy-momentum pseudotensors of Einstein, 

Tolman, and Landau and Lifshitz yield meaningful results only in quasi-
eni!T~~ ole'Y'Is-• f"~ C.OYT'lho"l1e-nt Gf the_ 

Cartesian coordinates. The energy-momentum complex of M0ller trans~ 
II 

forms like a scalar density under purely spatial transformations and there­

fore there is no such restriction of quasi-Cartesian coordinates on it. How­

ever, in the following we have evaluated all the components of aforesaid 

pseudotensors in the Kerr-Schild Cartesian coordinates. Such calculations 

without any approximation are obviously very lengthy. Therefore, for con­

venience in calculation, we have worked for small values of the rotation 

parameter a and have neglected the terms beyond its third order. The 

following are the components of the aforesaid pseudotensors for the Kerr­

Newman metric (Virbhadra 1990a, 1990b, 1990c, 1991a, 1991b, 1991c). 

( 4.4.12) 

(4.4.13) 
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Q
2
ax [ 2 ( 2 2) 4] = - -- 3a 2z - r - r 

47rr10 
( 4.4.14) 

(4.4.15) 

(4.4.16) 

(4.4.17) 

( 4.4.18) 

8 2 _ 8 1 _ t 2 _ t 1 _ L12 _ L21 _ Q
2

XY [ 3 2 ( 2 2 r2) + r4] 1- 2_1_2 __ -- ----a z-
47rr10 

( 4.4.19) 

( 4.4.20) 
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( 4.4.21) 

( 4.4.22) 

( 4.4.23) 

(4.4.24) 

(4.4.25) 

( 4.4.26) 
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( 4.4.27) 

( 4.4.29) 

( 4.4.30) 

(4.4.31) 
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( 4.4.32) 

( 4.4.33) 

Traces of the pseudotensors are 

().i = t.i = L.i = T i = 0 \ \ \ \ ( 4.4.34) 

4.5 Energy and angular momentum 

It is clear that the pseudotensors of Einstein, Tolman, and Landau and 

Lifshitz give same energy density for the Kerr-Newman field. Transforming 

the expression in spherical polar coordinates, the complexes of Einstein, 

Tolman, and Landau and Lifshitz give 

( 4.5.35) 

59 



whereas that of M0ller gives twice the above value. After performing 

the above integration, one gets 

Eexterior 

( 4.5.36) 

As the total gravitational mass is given by the mass parameter M, one 

concludes that the energy asssociated with a Kerr-Newman black hole is 

given by 

( 4.5.37) 

in prescriptions of Einstein, Tolman, and Landau and Lifshitz (Virb­

hadra 1990a, 1990c) whereas 

( 4.5.38) 

in M0ller's prescription (Virbhadra 1990c). 

The pseudotensors of LL, being symmetric in indices, is capable of giving 

angular momentum in asymptotically flat spacetimes. The three compo­

nents of angular momentum are given by 
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( 4.5.39) 

where a:, {3, "'(take cyclic values 1,2,3. Substituting ( 4.4.13-15) in ( 4.5.39), 

transforming to spherical polar coordinates and then performing the inte­

gration, one gets 

Jx = JY = 0, 

[ 

2 1 l n2 
fZ = 2aQ 2 .!!:___ + -

5r3 3r n 
q 

( 4.5.40) 

4.6 Recent investigations by Cooperstock and 
Richardson 

Recently Cooperstock and Richardson (1991) have extended our calcula­

tions for the Kerr-Newman energy upto the seventh order of the rotation 

parameter and have got 

( 4.6.41) 

with 

2 (a)2 3 (a)4 4 (a)6 
Y= 1 +3 R +5 R +7 R ( 4.6.42) 

in the prescriptions of Einstein, Tolman, and Landau and Lifshitz, and 
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Q2 
E=A1--Y 

R 

in the prescription of M0ller. 

( 4.6.43) 

Again they have succeeded in obtaining the Kerr-Newman energy In 

the prescriptions of Tolman without taking any approximation, given as 

follows: 

( 4.6.44) 

Performing the integration, they have got 

Q
2 

[ 2R 1 R +a] 
Eextcrior = 8 R2 - a2 + -;;,ln R- a R > a ( 4.6.45) 

and they have expressed the above result as following by power series 

expansion : 

Q 2 oo ( a ) 2n n + 1 
Eextcrior = 2R E R 2n + 1 

( 4.6.46) 

which agrees with the previous expressions for n = 0 to n = 3. 
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4. 7 Discussion 

Due to non-tensorial character, the importance of energy-momentum pseu­

dotensors to provide energy and momentum in curved spacetime was taken 

with a suspicion. Many authors argued (partly because they shared a scep­

tic viewpoint that different pseudotensors would yield different results for 

energy and momentum in a finite volume of a general relativistic system) 

that only the total energy in asymptotically flat spacetimes makes physical 

sense. Cohen and de Felice (1984), using the Komar's definition, evaL .uated 

energy in Kerr-Newman spacetime in Beyer-Lindquist coordinates which is 

given by 

(4.7.47) 

Generalizing the method ofPersides, Nahmad-Achar and Schutz (1987a) 

gave new definitions for energy, momentum, and angular momentum in 

curved spacetime and evaluated energy in Kerr field in Boyer-Lindquist 

(B-1) coordinates. The energy expression for the Kerr metric in B-1 co­

ordiantes obtained by them is lengthy. For small value of the rotation 

parameter they found that to be 

E = M- 2Ma2 2M2a2 0 ( 4) 
3~ + 3R~ + a (4.7.48) 
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where 

(4.7.49) 

We have earlier used the symbol .6. in chapter three. In the present 

context, it has been redefined by ( 4.7.49). 

Chellathurai and Dadhich (1990) - obtained energy in the Kerr-

Newman spacetime in B-1 coordinates which they further wrote for the 

small value of the rotation parameter : 

E (4.7.50) 

Kulkarni, Chellathurai, and Dadhich (1989) had evaluated the energy 

in Kerr metric which one can get by putting Q = 0 in the energy expression 

obtained by Chellathurai and Dadhich. 

Cohen and de Felice, Nahmad-Achar and Schutz, and Kulkarni et al, 

they all agree that there is no energy in the exterior of a Schwarzschild 

object and the entire energy is confined to its interior only. However, their 

results disagree for the Kerr metric. The result obtained by Cohen and de 

Felice gives no energy to the exterior of the Kerr black hole whereas that of 

Nahmad-Achar and Schutz and Kulkarni et al disagree with the results of 

Cohen and de Felice as the total energy associated with a Kerr black hole in 

their prescriptions is shared by its interior as well as the exterior. However, 
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it is clear that the energy for the Kerr metric obtained by N ahmad-Achar 

and Schutz and Kulkarni et al are different quantitatively. 

At this point, we (the present author) share a different opinion. Once 

one starts with a definition of energy which gives the entire energy associ­

ated with a Schwarzschild object to its interior only, the same definition of 

energy should not give energy for the Kerr object such that it is shared by 

its exterior as well, as one must remember that the Kerr black hole is iso­

lated having no medium surrounding it to transfer its rotational energy to 

its exterior (rotation parameter a is a constant). Recently Cooper,:;tock and 

Richardson (1991) have argued that in the absence of gravitational field the 

R-N energy must reduce to the flat space electrostatic energy, i,e; Q 2 /2R. 

Further they have written that switching off the rotation parameter in the 

energy expression for the Kerr-Newman metric, obtained by Cohen and de 

Felice in Komar's prescription, gives M - Q2 
/ R and therefore it fails to 

give the correct flat space limit. 

Now we have learned that the pseudotensors of Einstein, Tolman, and 

Landau and Lifshitz give same energy for the Kerr-Newman metric (cal­

culations have been carried out upto the seventh order of the rotation pa­

rameter) and that of M0ller gives twice the value obtained in aforesaid 

three prescriptions. Switching off the rotation parameter one gets energy 

for the Reissner-Nordstrom metric Jvf- Q2 /2R and therefore the definitions 

of Einstein, Tolman, and LL yield correct flat space limit for the electro­

static energy. However, like in the case of the Komar energy, M0ller's 
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complex does not give the correct fiat space limit for the electrostatic en­

ergy. Tod (1983), using the Penrose's definition, got the same result for 

the Reissner-Nordstrom metric as obtained by us in the prescriptions of 

Einstein, Tolman, and LL. Switching off the charge parameter, one finds 

that the definitions of Einstein, Tolman, Landau and Lifshitz, M0ller, and 

Komar give no energy to the exterior of a Kerr black hole. These expres­

sions for the Kerr-Newman energy contain three parts: the first is the mass 

parameter, the second is the electrostatic energy ( Q2 j2R as given by com­

plexes of Einstein, Tolman, and LL and Q 2 j R as given by those of M0ller 

and Komar), and the rest are due to the magnetic field in the K-lfspacetime 

due to the rotation of the charged object. 

There is no energy as well as momentum density in the Kerr field. It 

is the rotation of the charged object which gives angular momentum ( due 

to the electromagnetic field present there) in the Kerr-Newman spacetime. 

As the Kerr-Newman solution describes the exterior field due to a charged 

object rotating about Z-axix, one gets only Z-component of the angular 

momentum. The angular momentum, obtained in the prescription of LL, 

contains even power to the charge parameter and odd powers to the rotation 

parameter, and therefore the direction of the angular momentum vector 

depends on the direction of the rotation of the charged object and not on 

the sign of the charge on it. 

To see if the aforesaid pseudotensors give same result for all of their 

components and to see if there is symmetry or lack thereof, we have eval-
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uataed all the components of these pseudotensors for the Kerr-Newman 

metric ( upto to the third power of the rotation parameter). One finds 

that the pseudotensors of Einstein and Tolman give exactly same result, 

respectively, for all of their components. The axial symmnetry is clearly 

reflected from the components of the pseudotensors. We have learned that 

the entire energy in the exterior of a Kerr-Newman black hole is due to the 

electromagnetic field and therefore we have calculated the traces of these 

pseudotensors for the K-N metric. Despite their non-tensor character, we 

have again got an encouraging result that the pseudotensors are traceless 

for the K-N metric. In passing, it is worth mentioning that it is- desirable 

to extend the calculations without taking any approximation to see if the 

conclusions made above are sustained. 

Now one would naturally like to ask if the energy expressions obtained 

in the aforesaid prescriptions will maintain the same relationship and the 

pseudotensors of Einstein and Tolman will yield exactly same result for all 

of their components for non-static spacetimes. To answer these questions, 

we have considered the Vaidya radiating spacetime and this will be the 

subject of discussion in the next chapter. 
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Chapter 5 

Energy and momentum in Vaidya spacetime 

5.1 Introduction 

We have now learned that the energy-momentum pseudotensors of Einstein, 

Tolman, Landau and Lifshitz (LL) give same energy in the Kerr-Newman 

spacetime. However, that of M0ller gives twice the value obtained using 

these prescriptions. The entire energy in the Kerr-Newman field is only due 

to the the electromagnetic field present there and therefore one finds these 

pseudotensors to be traceless for this spacetime. Moreover, the complexes 

of Einstein and Tolman give the same result for all of their components. 

Now one would like to pursue these investigations for non-static space­

times. Lindquist, Schwartz, and Misner (1965) wrote that the problem of 

non-static solutions was discussed by Vaidya (1951,1953), by Raychaudhuri 

(1953), and by Israel (1958), and the most convenient form of the solution 

is that by Vaidya (1953). At present, we consider the well known Vaidya ra-
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diating spacetime which is expressed by a non-static spherically symmetric 

line-element. 

Vaidya (1952) started with a general non-static spherically symmetric 

line-element in Schwarzschild coordinates: 

(5.1.1) 

with B = B(r, t), A= A(r, t), D = D(r, t). He transformed the above 

line-element in quasi-Cartesian coordinates according to 

x r sinO cos¢, 

y r sinO sin¢, 

z = r cosO (5.1.2) 

and got 

A-D 2 
dr2 = Bdt 2

- D(dx 2 + dy2 + dz 2
)-

2 
(xdx + ydy + zdz) (5.1.3) 

r 

Further he obtained energy density for the above line-element in Tol-

man's prescription : 
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o 1 a [r; , ] t0 = -- - r (A - D - r D ) 
87rT 2 8r A 

(5.1.4) 

The prime denotes the partial derivative with respect to the radial 

coordinate. The above expression gives energy density for the Reissner­

Nordstrom as well as for the Vaidya radiating spacetimes. 

Later Lindquist, Schwartz, and Misner (1965) calculated energy and 

momentum in Vaidya radiating spacetime and got the energy-momentum 

given by pi = (M, 0, 0, 0) as expected. 

5.2 Vaidya radiating spacetime 

The Vaidya radiating spacetime (Vaidya 1951) is a non-static generalization 

of the Schwarzschild spacetime and it gives the gravitational field due to 

a spherically symmetric radiating star. The line-element describing this 

spacetime in the Schwarzschild coordinates is 

(5.2.5) 

with 

B { M }
2 

( 2M) f(M) l- -r- (5.2.6) 
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and 

( 2M)-1 

A= 1--
r 

(5.2.7) 

where M = M(r, t), M = 88~ and f(M) is an arbitrary function of the 

mass parameter M(r,t). Vaidya metric in quasi-Cartesian coordinates is 

given by (5.1.3) with D = 1, and Band A as given by (5.2.6) and (5.2.7) 

respectively. 

However, the same spacetime in Kerr-Schild form is given b:;: the line­

element ( Vaidya 1953; Lindquist et al 1965): 

with u = t- r and r as defined by (5.1.2). 

5.3 Calculations 

As the Vaidya radiating spacetime in the Kerr-Schild form is simpler in 

structure, we, starting with the line-element (5.2.8), have evaluated all the 

components of the pseudotensors given in the section two of chapter four. 

The components of energy-momentum complexes of Einstein, Tolman, LL, 

and M0ller for the Vaidya spacetime are listed below ( few symbols like a, 

(3, 1 which were used in chapter three are redefined here): 
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Boo= too= Loo =Too=- M' (5.3.9) 
47rr 2 

()lo =-Bot= tlo =-tot= -Lot= -Lto =-To 1 = o:xM' (5.3.10) 

where 

8/ = 8/ = t/ = t2
1 = -L12 = -L21 = {3xyM' (5.3.16) 

7, o = x{Jp, 7; o = y{Jp, ·~ o = z{Jp 

T, 1 = 1 [!vl(r 2
- 3x 2

) + Af'rx 2
] 

7; 2 =I [M(r2 - 3y2) + M'ry2] 

~ 3 = 1 [M(r 2
- 3z2

) + A1'rz2
] 

T, 2 = ~ 1 = XYVI' 

7; 3 = ~ 2 = yztry, 

~ l = 7, 3 = ZXI/1, 
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(5.3.20) 

(5.3.21) 

( 5.3.22) 

(5.3.23) 

(5.3.24) 

(5.3.25) 



1 
Q=--, 

47rr3 

Q 

{J = -, 
T 

{J 
I=-, 

T 

11 =-2M+ rM', 

V=j.1-Af ( 5.3.26) 

The pnme denotes the derivative with respect to the coorginate u. 

Traces of these pseudotensors for the spacetime under investigation are 

(}. i = t. i = L. i = T i = o 
t I I I (5.3.27) 

5.4 Discussion 

We have already discussed in chapter four that the pseudotensors of Ein-

stein, Tolman, and LL give the same energy density in the Kerr-Newman 

spacetime whereas that of M0ller gives twice the value:· obtained in these 

prescriptions. However, one finds that all these prescriptions give the same 

energy density in the Vaidya spacetime. The total energy-momentum as­

sociated with the Vaidya spacetime is given by pi = (M, 0, 0, 0) in all 

these four prescriptions. Despite the non-tensorial character of these pseu­

dotensors, like in the case of the Kerr-Newman metric, one finds these 
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energy-momentum complexes to be traceless for the radiating spacetime 

and 8/ = t/ for all values of indices i and k. 

As the Vaidya spacetime is a non-static generalization of the Schwarzschild 

spacetime, one finds here all the components of momentum density to be 

non-zero. However, the total momentum is zero as expected. For the 

Schwarzschild spacetime (M=constant), all the components of the pseu­

dotensors of Einstein, Tolman, and Landau and Lifshitz vanish , whereas 

that of M0ller, none but only the energy and momentum density compo­

nents are zero. The symmetry of the spacetime is clearly reflec~ed in the 

components of the pseudotensors. 

Now we come back to the Vaidya's calculation of Tolman energy for a 

general non-static spherically symmetric metric. The total energy in the 

Vaidya radiating spacetime obtained by him is the same as obtained by 

Lindquist et al (used LL pseudotensor) as well as by us (we have used 

pseudotensors of Einstein, Tolman, and M0ller). Moreover, the Vaidya's 

expression for the Tolman energy for a general non-static spherically sym­

metric metric yields same energy density for the Reissner-Nordstrom field 

as obtained by us (we have taken Reissner-Nordstrom line-element in Kerr­

Schild form) which is desired. Therefore, one concludes that the Tolman 

energy for the R-N metric is consistent whether one uses for this the line­

element (5.1.3) or that expressed in Kerr-Schild form given by ( 4.3.10) with 

a = 0. Now one would naturally like to learn if the other pseudotensors 

( those of Einstein, LL, and M0ller) yield the same result for the energy 
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in R-N spacetime expressed by the two forms of the line-elements. This is 

what we will discuss in the next chapter. 
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Chapter 6 

A comment on energy-momentum 
pseudotensor of Landau and Lifshitz 

6.1 Introduction 

By previous investigations we have learned that the energy-momentum 

pseudotensors of Einstein, Tolman, Landau and Lifshitz, and M0ller give 

sensible results for energy in Kerr-Newman as well as the Vaidya radi­

ating spactimes when calculations have been accomplished in Kerr-Schild 

Cartesian coordinates. The pseudotensor of LL, being symmetric in its in­

dices, have privilege over others to provide angular momentum in, of course, 

asymptotically flat spacetimes. We have discussed that it yields sensible 

result for angular momentum in Kerr-Newman spacetime. It is well known 

that these pseudotensors provide meaningful results in quasi-Cartesian co­

ordinates (Kerr-Schild Cartesian coordinates satisfy this condition). An 

asymptotically flat spacetime can be expressed in quasi-Cartesian coordi-
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nates though it may not be in Kerr-Schild form. 

We have already discussed about the Vaidya's expression for Tolman 

energy for a general non-static spherically symmetric spacetime in the last 

chapter. However, to maintain the continuity, we will rediscuss this in brief. 

Vaidya (1952) started with a line-element in Schwarzschild coordinates: 

( 6.1.1) 

where B = B(r, t), A = A(r, t), and D = D(r, t) are such-that the 

line-element is asymptotically flat. Using the usual flat space Cartesian 

coordinates transformations, he got 

A-D 
dT 2 = Bdt 2

- D(dx 2 + dy2 + dz 2
)- 2 (xdx + ydy + zdz) 2 (6.1.2) 

r 

Further, he found Tolman's energy density for the line-element given 

above: 

t0 = - - - r (A - D - r D ) o 1 a [/!r , ] 
81rr 2 8r A 

(6.1.3) 

The prime denotes the partial derivative with respect to the radial co­

ordinate. For the Reissner-Nordstrom spacetime (B = A-1 = 1- 2J'( + 

~' D = 1), it yields 
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t 0 
0 (6.1.4) 

which is exactly same as obtained, in chapter four, for the R-N metric 

in Kerr-Schild Cartesian coordinates (a = 0 in the K-N metric gives the 

R-N metric) and therefore one is happy to find that the energy obtained in 

the Tolman's prescription is consistent. Now one would like to know if the 

results are consistent in the prescriptions of Einstein, Tolman, and M0ller. 

This is the subject of investigation in the following. 

6.2 Calculations 

We have claculated all the components of the energy-momentum complexes 

of Einstein, Tolman, Landau and Lifshitz, and M0ller for the Reissner­

Nordstrom metric expressed by (6.1.2) (wit~ B = A-1 = 1- 2~ +~, D = 1) 

which are listed below: 

Loo = -Q4 + Q2r (r + 4M)- 4M2
r

2 

81rr 2 [ Q4 + 2Q2r ( r - 2M) + r 2 ( r - 2Af)2
] 
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'( 

r. ·• . ~ ,·, 

(6.2.5) 

(6.2.6) 

(6.2.7) 



where index a runs from 1 to 3. 

(6.2.8) 

(6.2.9) 

~ (6.2.10) 

e 2 _ e 1 _ t 2 _ t 1 __ L12 _ -L21 _ Q
2
xy 

1 - 2 - 1 - 2 - - - 47!T6 (6.2.11) 

e 3 _ e 2 _ t 3 _ t 2 __ 1 23 _ -L32 _ Q
2
yz 

2 - 3 - 2 - 3 - - -
47rr6 

(6.2.12) 

(6.2.13) 

(6.2.14) 

(6.2.15) 
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1 3 zx ( 2 ) I; = I; = --
6 

2Q - 3M r 
4rrr 

Traces are given by 

4Mr (2Q 2
- Mr)- 3Q4 

8rrr4 [r 2 - 2M r + Q2] 

(6.2.16) 

(6.2.17) 

(6.2.18) 

(6.2.19) 

(6.2.20) 

(6.2.21) 

The Reissner-Nordstrom metric in Kerr-Schild Cartesian coordinates 

(Carter 1968): 

dT = dT - dx - dy - dz - - - - ( dT + dr) 2 2 2 2 2 (2M Q
2

) 2 

r r 2 (6.2.22) 
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The time coordinate is here denoted by T instead oft as used in (4.3.10). 

The time coordinates in (6.1.2) [with B = A- 1 = 1- 2~ +~]and (6.2.22) 

are related through 

( 
2.M Q2) -1 

T = ±t - r + j dr 1 - -r- + ~ (6.2.23) 

The chapter four contains all the components of the aforesaid pseu­

dotensors for the Kerr-Newman metric in Kerr-Schild Cartesian coordi-

nates. Switching off the rotation parameter, one gets for the R-N metric: 

(6.2.24) 

B 0 _ B a _ t 0 _ t a _ LOa _ LaO _ rr a _ O 
a - 0 - (l - 0 - - - 1 o - (6.2.25) 

( index a: runs from 1 to 3). 

(6.2.26) 

(6.2.27) 
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0 2 _ 0 1 _ t 2 _ t 1 __ L12 _ -L21 _ Q
2
xy 

1 - 2 - 1 - 2 - - -
47rr 6 

B 3 _ B 2 _ t 3 _ t 2 _ -L23 _ -L32 _ Q2
yz 

2 - 3 - 2 - 3 - - -

7;. 2 = 7,. 1 = xy 6 ( 2Q2 - 3M r) 
47rr 
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47rr6 

(6.2.28) 

(6.2.29) 

(6.2.30) 

(6.2.31) 

(6.2.32) 

(6.2.33) 

(6.2.34) 

(6.2.35) 

(6.2.36) 

(6.2.37) 

(6.2.38) 



I; 3 = 7; 2 = 4y z 6 ( 2 Q2 - 3M T) 
1fT 

(6.2.39) 

1 3 zx ( 2 ) 7; = ~ = -
4 6 2Q - 3M T 

1fT 
(6.2.40) 

Traces of the pseudotensors are 

(6.2.41) 

6.3 Discussion 

A comparision of (6.2.5-19) and (6.2.24-40) makes it clear that the values for 

the components of the pseudotensors of Einstein, Tolman, LL, and M0ller 

for the Reissner-Nodstrom spacetime expressed by the line-elements ( 6.1.2) 

and (6.2.22) are consistent except the components L 00 , ~ 0 (a takes values 

1 to 3). The energy-momentum complexes of Einstein, Tolman, and M0ller 

give respectively same energy density for the Reissner-Nordstrom spacetime 

expressed by the line-elements (6.1.2) as well as (6.2.22). However, that of 

LL does not give a consistent result. Moreover, switching off the charge pa­

rameter in (6.2.6) yields negative energy density in the Scharzschild field for 

all values of the radial distance and the mass parameter. One can see that 

0/ =t/ for all values of indices i and k. Despite the non-tensorial charac­

ter, the energy-momentum complexes of Einstein, Tolman, and M0ller have 
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been found to be traceless for the Reissner-N ordstrom spacetime expressed 

by both forms of the line-elements. As opposed to above, the pseudotensor 

of LL is however traceless for the R-N field expressed by the line-element 

(6.2.22), we find this result to be not consistent for the same spacetime 

given by (6.1.2), which is an undesired outcome of the LL pseudotensor. 

Though one has a predilection for the LL energy-momentum pseudoten­

sor over others, as, being symmetric, it can be used to evaluate angular 

momentum in asymptotically flat spacetimes, one concludes that it suffers 

from a relative drawback as well. 

However, we believe that an adequate prescription for energy- momen­

tum localization in a general relativistic system should be possible to be 

obtained which requires further serious effort. 
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